Combined binary classifiers with applications to speech recognition

نویسندگان

  • Aldebaro Klautau
  • Nikola Jevtic
  • Alon Orlitsky
چکیده

Many applications require classification of examples into one of several classes. A common way of designing such classifiers is to determine the class based on the outputs of several binary classifiers. We consider some of the most popular methods for combining the decisions of the binary classifiers, and improve existing bounds on the error rates of the combined classifier over the training set. We also describe a new method for combining binary classifiers. The method is based on stacking a neural network and, when used with support vector machines as the binary learners, substantially decreased the error rate in two vowel classification tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Speech Recognition using Acoustic Landmarks and Binary Phonetic Feature Classifiers

In spite of decades of research, Automatic Speech Recognition (ASR) is far from reaching the goal of performance close to Human Speech Recognition (HSR). One of the reasons for unsatisfactory performance of the state-of-the-art ASR systems, that are based largely on Hidden Markov Models (HMMs), is the inferior acoustic modeling of low level or phonetic level linguistic information in the speech...

متن کامل

Title of dissertation : SPEECH RECOGNITION BASED ON PHONETIC FEATURES AND ACOUSTIC LANDMARKS

Title of dissertation: SPEECH RECOGNITION BASED ON PHONETIC FEATURES AND ACOUSTIC LANDMARKS Amit Juneja, Doctor of Philosophy, 2004 Dissertation directed by: Carol Espy-Wilson Department of Electrical and Computer Engineering A probabilistic and statistical framework is presented for automatic speech recognition based on a phonetic feature representation of speech sounds. In this acoustic-phone...

متن کامل

Combined Gesture-Speech Recognition and Synthesis Using Neural Networks

Sign languages such as Spanish Sign Language (LSE) are the primary communication way among members of the Deaf community. However this language is not widely known outside of this community. The techniques for automatic recognizing hand signs proposed in this paper allow creating systems which can help deaf people to communicate with others, by providing them with computer tools for assisted co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002